LANTHANIDE INDUCED CHEMICAL SHIFTS IN NATURAL CYCLOPROPANES; STEREOCHEMISTRY OF CHRYSANTHEMYL AND PRESQUALENE ALCOHOLS AND ESTERS.

By L. Crombie, D.A.R. Findley and D.A. Whiting
(Department of Chemistry, The University, Nottingham NG7 2RD)
(Received in UK 14 August 1972; accepted for publication 24 August 1972)

Much current interest in natural cyclopropanes centres on their role in monoterpenoid, ¹ triterpenoid, ² and carotenoid³, ⁴ biosynthesis. Stereochemical assignments, rarely completely straight forward, are readily amenable to analysis in terms of n.m.r. lanthanide shift plots, expressed as gradient (nearest 0.5) of shift (ppm) vs mol ratio {Eu(FOD)₃/substrate}, as illustrated below.

Comparing data for trans (t) and cis (c) methyl chrysanthemates (1) and (2), the response of H_f to shift reagent is similar for both compounds {gradients, $H_f(\underline{t})$ 8.5, (c)7.5}, but He and Hb are more affected in the transester {He(t)8.5, (c)3.5; Hb(t)5.0, (c)1.5}, whilst Hd and Ha are more affected in the cis-ester {Hd(t) 2.5, (c) 7.5; Ha(t) 2.5, (c) 4.5}. These effects are concordant with the stereochemistry shown, and the geometric relationship of the C(3) methyls to the C(1) carbomethoxy is readily deduced.

He
$$R$$
 R H_f H_f

In the 1,2-trans ester the methyl <u>cis</u> to carbomethoxy appears at lower τ (Hb 8.75, Ha 8.89). This correlation is valuable in stereochemical assignment in the presqualene² and prephytoene⁴ series.

Similar results are obtained for <u>trans-</u> and <u>cis-</u> chrysanthemyl alcohols, shifts being generally larger (increased coordination). Thus $H_f(\underline{t})$ and $H_f(\underline{c})$ plots have the same gradient (19.5) while He and Hb are more shifted, and Ha and Hd are less shifted, in the <u>trans-</u> alcohol than in the <u>cis-</u> alcohol {He(\underline{t}) 11.5, (\underline{c}) 8.5; Hb(\underline{t}) 9.5, (\underline{c}) 5.0; Hd(\underline{t}) 5.5, (\underline{c}) 10.5; Ha(\underline{t}) 5.5, (\underline{c}) 9.0}

The stereoisomeric presqualene alcohols (5) and (6) are those predominating in synthesis 2 (low R_f and high R_f respectively). The present data show that the shift response of protons Hf, Hd, and Hg are the same (within experimental error) in both compounds as expected from the stereochemistries shown {Hf 21, Hd 6.0, Hg 33.5}, although He (L $R_{
m f}$) (10) and He (H $R_{
m f}$) (13) are not in such close agreement. On comparing these values with those for Hd and He in alcohols (3) and (4), a 1,2- trans geometry is indicated for both (5) and (6). This is supported by the coupling constant $J_{1,2}$ in the two esters corresponding to alcohols (5) and (6), which is 5.1 Hz in both (cf. $J_{1,2}(1)$ 5.1 Hz, $J_{1.2}(2)$ 8.8 Hz). The multiplicity of He and Hf are clearly observed in the spectra of the esters when clarified by Eu (FOD) 1. The 3-CH3 signal is more affected by shift reagent in (5) (H_h) than in (6) {Hh (LR_f) 9.0, (HR_f) 5.5}. This methyl is therefore 1,3-cis to the CH₂OH in (5) and 1,3-trans in (6). The stereochemistry about the ring is thus fully defined in both natural presqualene alcohol (5) and its isomer.

- L. Crombie, P.A. Firth, R.P. Houghton, D.A. Whiting, and D.K. Woods, J.Chem. Soc. (Perkin I), 1972, 642; B.M. Trost, P. Conway, and J. Stanton, Chem. Comms., 1971, 1639; D.V. Banthorpe and B.V. Charlwood, Nature New Biology, 1971, 231, 285; C. Dale Poulter, S.G. Moesinger, and W.W. Epstein, Tetrahedron Letters, 1972, 67.
- R.V.M. Campbell, L. Crombie, and G. Pattenden, <u>Chem. Comms.</u>, 1971, 218, and refs. cited therein.
- L.J. Altman, L. Ash, R.C. Kowerski, W.W. Epstein, B.R. Larsen, H.C. Rilling, F. Muscio, and D.E. Gregonis, J. Amer. Chem. Soc. 1972, 94, 3257.
- L. Crombie, D.A.R. Findley, and D.A. Whiting, <u>Chem. Comms.</u>, 1972, In the Press.

Low \underline{R}_f and high \underline{R}_f alcohols previously obtained contained \underline{cis} double bond isomers, the stereoselectivity of cyclopropane formation being much higher than originally thought.